February 06, 2024 Volume 20 Issue 05
 

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Sensors powered by sound could save millions of batteries

Researchers at ETH Zurich, a Swiss univeristy known for its engineering, science, and technology programs, have developed a sensor that uses energy from sound waves to control electronic devices. This could one day save millions of batteries.

By Peter Ruegg, ETH Zurich

Sensors that monitor infrastructure, such as bridges or buildings, or are used in medical devices, such as prostheses for the deaf, require a constant supply of power. The energy for these devices usually comes from batteries, which are replaced as soon as they are empty. This creates a huge waste problem. A European Union (EU) study forecasts that in 2025, 78 million batteries will end up in the trash every day.

Newer models of the sensor are highly miniaturized and fit on a fingertip. [Credit: Photo courtesy of Marc Serra-Garcia/Amolf]

 

 

A new type of mechanical sensor, developed by researchers led by Marc Serra-Garcia and ETH geophysics professor Johan Robertsson, could now provide a remedy. Its creators have already applied for a patent for their invention and have presented the principle in the journal Advanced Functional Materials.

Certain sound waves cause the sensor to vibrate
"The sensor works purely mechanically and doesn't require an external energy source. It simply utilizes the vibrational energy contained in sound waves," Robertsson says.

Whenever a certain word is spoken or a particular tone or noise is generated, the sound waves emitted -- and only these -- cause the sensor to vibrate. This energy is then sufficient to generate a tiny electrical pulse that switches on an electronic device that has been switched off.

The prototype the researchers developed in Robertsson's lab at the Switzerland Innovation Park Zurich in Dubendorf has already been patented. It can distinguish between the spoken words "three" and "four." Because the word "four" has more sound energy that resonates with the sensor compared to the word "three," it causes the sensor to vibrate, whereas "three" does not. That means the word "four" could switch on a device or trigger further processes. Nothing would happen when "three" is spoken.

Efficient miniaturization: 100 sound-sensitive elements fit into just a 1x1 mm space on the new sensor (shown left). The sound-sensitive elements are shown in detail on the right. [Credit: Photo courtesy of Marc Serra-Garcia/Amolf]

 

 

 

 

Newer variants of the sensor should be able to distinguish between up to 12 different words, such as standard machine commands like "on," "off," "up," and "down". Compared to the palm-sized prototype, the new versions are also much smaller -- about the size of a thumbnail -- and the researchers are aiming to miniaturize them further.

Metamaterial without problematic substances
The sensor is made of a metamaterial. However, it's not strictly the material used that gives the sensor its special properties, but rather the structure of the material. "Our sensor consists purely of silicon and contains neither toxic heavy metals nor any rare earths, as conventional electronic sensors do," Serra-Garcia says.

The sensor is made of dozens of identical or similarly structured plates connected to each other via tiny bars. These connecting bars act like springs. The researchers used computer modeling and algorithms to develop the special design of these microstructured plates and work out how to attach them to each other. It is the springs that determine whether or not a particular sound source sets the sensor in motion.

The first prototype of a new sensor powered by sound was relatively large. (Photograph: Astrid Robertsson/ETH Zurich)

 

 

Potential use cases for these battery-free sensors include earthquake or building monitoring. They could, for example, register when a building develops a crack that has the right sound or wave energy.

There is also interest in battery-free sensors for monitoring decommissioned oil wells. Gas can escape from leaks in boreholes, producing a characteristic hissing sound. Such a mechanical sensor could detect this hissing and trigger an alarm without constantly consuming electricity, making it far less expensive to run and requiring much less maintenance.

Sensor for medical implants
Serra-Garcia also sees applications in medical devices, such as cochlear (ear) implants. These prostheses for the deaf require a permanent power supply for signal processing from batteries. Their power supply is located behind the ear, where there is no room for large battery packs. That means the wearers of such devices must replace the batteries every 12 hours. The novel sensors could also be used for the continuous measurement of eye pressure. "There isn't enough space in the eye for a sensor with a battery," he says.

"There's a great deal of interest in zero-energy sensors in industry, too," Serra-Garcia adds. He no longer works at ETH but at AMOLF, a public research institute in the Netherlands, where he and his team are refining the mechanical sensors. Their aim is to launch a solid prototype by 2027. "If we haven't managed to attract anyone's interest by then, we might found our own start-up," he says.

Published February 2024

Rate this article

[Sensors powered by sound could save millions of batteries]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2024 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy